3.61 \(\int \frac{1}{(a+b \cos (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=110 \[ \frac{\sqrt{2} \sin (c+d x) \sqrt [3]{\frac{a+b \cos (c+d x)}{a+b}} F_1\left (\frac{1}{2};\frac{1}{2},\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\cos (c+d x)),\frac{b (1-\cos (c+d x))}{a+b}\right )}{d (a+b) \sqrt{\cos (c+d x)+1} \sqrt [3]{a+b \cos (c+d x)}} \]

[Out]

(Sqrt[2]*AppellF1[1/2, 1/2, 4/3, 3/2, (1 - Cos[c + d*x])/2, (b*(1 - Cos[c + d*x]))/(a + b)]*((a + b*Cos[c + d*
x])/(a + b))^(1/3)*Sin[c + d*x])/((a + b)*d*Sqrt[1 + Cos[c + d*x]]*(a + b*Cos[c + d*x])^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0692391, antiderivative size = 110, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {2665, 139, 138} \[ \frac{\sqrt{2} \sin (c+d x) \sqrt [3]{\frac{a+b \cos (c+d x)}{a+b}} F_1\left (\frac{1}{2};\frac{1}{2},\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\cos (c+d x)),\frac{b (1-\cos (c+d x))}{a+b}\right )}{d (a+b) \sqrt{\cos (c+d x)+1} \sqrt [3]{a+b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(-4/3),x]

[Out]

(Sqrt[2]*AppellF1[1/2, 1/2, 4/3, 3/2, (1 - Cos[c + d*x])/2, (b*(1 - Cos[c + d*x]))/(a + b)]*((a + b*Cos[c + d*
x])/(a + b))^(1/3)*Sin[c + d*x])/((a + b)*d*Sqrt[1 + Cos[c + d*x]]*(a + b*Cos[c + d*x])^(1/3))

Rule 2665

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt
[1 - Sin[c + d*x]]), Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]], x] /; FreeQ[{a, b,
 c, d, n}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*n]

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rubi steps

\begin{align*} \int \frac{1}{(a+b \cos (c+d x))^{4/3}} \, dx &=-\frac{\sin (c+d x) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{1+x} (a+b x)^{4/3}} \, dx,x,\cos (c+d x)\right )}{d \sqrt{1-\cos (c+d x)} \sqrt{1+\cos (c+d x)}}\\ &=-\frac{\left (\sqrt [3]{-\frac{a+b \cos (c+d x)}{-a-b}} \sin (c+d x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{1+x} \left (-\frac{a}{-a-b}-\frac{b x}{-a-b}\right )^{4/3}} \, dx,x,\cos (c+d x)\right )}{(a+b) d \sqrt{1-\cos (c+d x)} \sqrt{1+\cos (c+d x)} \sqrt [3]{a+b \cos (c+d x)}}\\ &=\frac{\sqrt{2} F_1\left (\frac{1}{2};\frac{1}{2},\frac{4}{3};\frac{3}{2};\frac{1}{2} (1-\cos (c+d x)),\frac{b (1-\cos (c+d x))}{a+b}\right ) \sqrt [3]{\frac{a+b \cos (c+d x)}{a+b}} \sin (c+d x)}{(a+b) d \sqrt{1+\cos (c+d x)} \sqrt [3]{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 2.03875, size = 268, normalized size = 2.44 \[ \frac{15 a \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{-\frac{b (\cos (c+d x)+1)}{a-b}} (a+b \cos (c+d x)) F_1\left (\frac{2}{3};\frac{1}{2},\frac{1}{2};\frac{5}{3};\frac{a+b \cos (c+d x)}{a-b},\frac{a+b \cos (c+d x)}{a+b}\right )-6 \sin (c+d x) \left (2 \csc ^2(c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} (a+b \cos (c+d x))^2 F_1\left (\frac{5}{3};\frac{1}{2},\frac{1}{2};\frac{8}{3};\frac{a+b \cos (c+d x)}{a-b},\frac{a+b \cos (c+d x)}{a+b}\right )+5 b^2\right )}{10 b d \left (a^2-b^2\right ) \sqrt [3]{a+b \cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Cos[c + d*x])^(-4/3),x]

[Out]

(15*a*AppellF1[2/3, 1/2, 1/2, 5/3, (a + b*Cos[c + d*x])/(a - b), (a + b*Cos[c + d*x])/(a + b)]*Sqrt[-((b*(-1 +
 Cos[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Cos[c + d*x]))/(a - b))]*(a + b*Cos[c + d*x])*Csc[c + d*x] - 6*(5*b^2
 + 2*AppellF1[5/3, 1/2, 1/2, 8/3, (a + b*Cos[c + d*x])/(a - b), (a + b*Cos[c + d*x])/(a + b)]*Sqrt[-((b*(-1 +
Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)]*(a + b*Cos[c + d*x])^2*Csc[c + d*x]^2)*Sin[c +
d*x])/(10*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.127, size = 0, normalized size = 0. \begin{align*} \int \left ( a+b\cos \left ( dx+c \right ) \right ) ^{-{\frac{4}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(d*x+c))^(4/3),x)

[Out]

int(1/(a+b*cos(d*x+c))^(4/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(-4/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{2}{3}}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(2/3)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (a + b \cos{\left (c + d x \right )}\right )^{\frac{4}{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))**(4/3),x)

[Out]

Integral((a + b*cos(c + d*x))**(-4/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(-4/3), x)